Algebra 1B Live Lesson

U3L1 - Adding and Subtracting Polynomials (Chapter 8-1 in textbook)

Agenda

1. Review selected problems and topics from U3L1.
2. Use the 2-column note system to take better notes in math class. Bring your math notebook and pen or pencil to each math LiveLesson class.

2-Column Notes Template

1. Announcements/To Do's
2. School-Wide Learner Outcomes
3. LL Objectives
4. Vocabulary words
5. Problems
6. Summary (End of class)
7. Write down important details.
8. What are you going to work on this week?
9. Definitions (fill in as we go)
10. Steps to solving problems
11. 1 or 2 sentences about the

LL class.

Reminders and To - Do's

Information

1. Complete 1 math lesson per day.
2. Check your WebMail every day
3. Be prepared to spend 4-6 hours per day on schoolwork.
4. Remind your Learning Coach to take daily attendance

What to do

1. Go to your Planner in Connexus to find the math lesson for the day
2. Go to Connexus to find WebMail
3. Complete lessons for the day from your Planner. Do not get behind on lessons.
4. Have your Learning Coach log into Connexus daily.

Reminders and To - Do's

Information

5. Go to the Message Board first for information about our math class.
6. Contact Mr. Elizondo for math questions.

Remember: You need at least 2 phone calls with Mr. Elizondo per semester.

What to do

6. Call (559) 549-3244 and leave a voicemail if call is not answered.

Make an appointment at: https://elizondo.youcanbook.me

Send a WebMail

U3L1 - California Common Core State Standards

- HSA-APR.A.1: Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

U3L1 - Objectives

- Classify, add, and subtract polynomials

U3L1 - Vocabulary

- Monomial
- Degree of a monomial
- Polynomial
- Standard form of a polynomial
- Degree of a polynomial
- Binomial
- Trinomial

U3L1 - Vocabulary

Monomial:
a real number (-18. $-5 . \frac{2}{3}$)
a variable (x, y, b)
a product of a real number and one or more variables with wholenumber exponents
$\left(-4 x^{2}, 2.5 x, y^{3}, \frac{a}{3}\right)$

Degree of a monomial: sum of the exponents of its variables

Degree of a nonzero constant is 0

Zero has no degree

U3L1 - Finding the Degree of a Monomial

What is the degree of each monomial?
$8 x y$
$-7 y^{4} z$
11

Degree: 2

$$
8 x y=8 x^{1} y^{1}
$$

Degree: 5

$$
-7 y^{4} z=-7 y^{4} z^{1}
$$

Degree: 0
$11=11 x^{0}$

U3L1 - Adding and Subtracting Monomials (2)

What is the sum or difference?

$$
\begin{aligned}
3 x^{2}+5 x^{2} & =8 x^{2} \\
4 x^{3} y-x^{3} y & =3 x^{3} y \\
2 x^{2} y^{4}-7 x^{2} y^{4} & =-5 x^{2} y^{4}
\end{aligned}
$$

U3L1 - Polynomials

A polynomial is a monomial or a sum of monomials. The following polynomial is the sum of the monomials $3 x^{4}, 5 x^{2},-7 x$, and 1 .

Standard form of a polynomial means that the degrees of its monomial terms decrease from left to right.

The degree of a polynomial in one variable is the same as the degree of the monomial with the greatest exponent.

$$
\text { The degree of } 3 x^{4}+5 x^{2}-7 x+1 \text { is } 4
$$

U3L1 - Naming Polynomials

Polynomial	Degree	Name Using Degree	Number of Terms	Name Using Number of Terms
6	0	Constant	1	Monomial
$3 x-2$	1	Linear	2	Binomial
$4 x^{2}+3 x-4$	2	Quadratic	3	Trinomial
$8 x^{3}$	3	Cubic	1	Monomial
$9 a^{4}-3 a^{3}+9 a$	4	Fourth degree	3	Trinomial

U3L1 - Classifying Polynomials

Write each polynomial in standard form. What is the name of the polynomial based on its degree and number of terms?

$$
\begin{aligned}
& 3 x+4 x^{2} \\
& 4 x^{2}+3 x \quad \text { Place terms in order. } \\
& \quad \text { This is a quadratic binomial. }
\end{aligned}
$$

$$
\begin{array}{ll}
4 x-1+5 x^{3}+7 x & \\
5 x^{3}+4 x+7 x-1 & \text { Place terms in order. } \\
5 x^{3}+11 x-1 & \text { Combine like terms. }
\end{array}
$$

This is a cubic trinomial.

U3L1 - Adding Polynomials

Travel A researcher studied the number of overnight stays in U.S. National Park Service campgrounds and in the backcountry of the national park system over a $5-y r$ period. The researcher modeled the results, in thousands, with the following polynomials.

Campgrounds: $-7.1 x^{2}-180 x+5800$
Backcountry: $21 x^{2}-140 x+1900$
In each polynomial, $x=0$ corresponds to the first year in the $5-y r$ period. What polynomial models the total number of overnight stays in both campgrounds and backcountry?

Method 1 Add vertically.
Line up like terms. Then add the coefficients.

$$
\begin{array}{r}
-7.1 x^{2}-180 x+5800 \\
+21 x^{2}-140 x+1900 \\
\hline 13.9 x^{2}-320 x+7700
\end{array}
$$

U3L1 - Adding Polynomials

Travel A researcher studied the number of overnight stays in U.S. National Park Service campgrounds and in the backcountry of the national park system over a $5-y r$ period. The researcher modeled the results, in thousands, with the following polynomials.

Campgrounds: $-7.1 x^{2}-180 x+5800$
Backcountry: $21 x^{2}-140 x+1900$
In each polynomial, $x=0$ corresponds to the first year in the $5-y r$ period. What polynomial models the total number of overnight stays in both campgrounds and backcountry?

Method 2 Add horizontally.
Group like terms. Then add the coefficients.

$$
\begin{gathered}
\left(-7.1 x^{2}-180 x+5800\right)+\left(21 x^{2}-140 x+1900\right) \\
=\left(-7.1 x^{2}+21 x^{2}\right)+(-180 x-140 x)+(5800+1900) \\
=13.9 x^{2}-320 x+7700
\end{gathered}
$$

U3L1 - Subtracting Polynomials

What is a simpler form of $\left(x^{3}-3 x^{2}+5 x\right)-\left(7 x^{3}+5 x^{2}-12\right)$?
Method 1 Subtract vertically.

$$
\begin{array}{cl}
\begin{array}{c}
x^{3}-3 x^{2}+5 x \\
-\left(7 x^{3}+5 x^{2}-12\right)
\end{array} & \text { Line up like terms. } \\
\hline x^{3}-3 x^{2}+5 x & \begin{array}{l}
\text { Then add the opposite of each term in } \\
\text { the polynomial being subtracted. }
\end{array} \\
\frac{-7 x^{3}-5 x^{2}+12}{-6 x^{3}-8 x^{2}+5 x+12} &
\end{array}
$$

Method 2 Subtract horizontally.

$$
\begin{array}{ll}
\left(x^{3}-3 x^{2}+5 x\right)-\left(7 x^{3}+5 x^{2}-12\right) & \\
=x^{3}-3 x^{2}+5 x-7 x^{3}-5 x^{2}+12 & \begin{array}{l}
\text { Write the opposite of each term in } \\
\text { the polynomial being subtracted. }
\end{array} \\
=\left(x^{3}-7 x^{3}\right)+\left(-3 x^{2}-5 x^{2}\right)+5 x+12 & \text { Group like terms. } \\
=-6 x^{3}-8 x^{2}+5 x+12 & \text { Simplify. }
\end{array}
$$

Questions?

- Check the Message Board first
- Send a WebMail
- You can also make an appointment at https://elizondo.youcanbook.me
- You can also call me at (559) 549-3244. If I'm not available to answer your call, please leave a voicemail with your full name and phone number.

